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QCD phase diagram

Hard to study area:

@ no numerical results from
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EoS of nuclear matter and compact stars

What are the effects of quantum fluctuations on the
Equaiton of State (EOS) ?

What is the difference between the same
TOV- parameters in mean field and quantum flucuations
equations included ?

Compressibility (important for neutron star mass!)
Mass,
Radius
FRG is a general method to take

Observations quantum fluctuations into account.

‘Binding energy

Surface tension of nuclear matter
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Freguently asked questions

» Why use renormalization in an effective theory?

Renormalization takes into account quantum fluctuations. This
provides features one can not have in a mean field model.
» What are these features?

- Quantum fluctuations play huge role in phase transitions - better
description of phase transitions.

> FRG has a built in thermodynamical stability, which is not present in
many mean field constructions; for example: Walecka-model (the
free energy is always convex)

- Better consistency with the quantum mechanic nature of the
particles. D
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Freguently asked questions

» What is the meaning of FRG in an effective theory?

It is a cutoff theory. It should provide a low energy effective description

of QCD OR Thinking in reverse: starting from low energy it could give us a hint
of QCD at the cutoff: we can test what operators are important at that scale using
the observations as constraints.

» |Is the effect of quantum fluctuations relevant in the case of compact stars?

> |t can change the neutron star mass for a given model, because the
pressure of quantum fluctuations is taken into account

> Possible new measurements (gravity waves) are more sensitive to the
phase structure, which is better described using quantum fluctuations

- Masquarade problem: many different model gives similar neutron star 5
properties. Using FRG the quantum mechanical and thermodynamic ’
consistency can help deciding between models. “
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Functional Renormalization Group (FRG)

» General non-perturbative method to determine the

effective action of a system.

- Scale dependent effective action (k scale parameter)

1
Ol = §/dpD STr

Ok I},

T + Ry
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Wetterich
equation

k=0
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Integration
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Functional Renormalization Group (FRG)

» General non-perturbative method to determine the
effective action of a system.

- Scale dependent effective action (k scale parameter)

1 - OpRp
O]’ = —/dpD ST'r (z)k Hh

Need an ansatz for the integration
Not necessarly =l gl(k) S Scale

perturbative ansatz! I = Z T O, dependent
=1 ' coupling
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Functional Renormalization Group (FRG)

» General non-perturbative method to determine the
effective action of a system.

- Scale dependent effective action (k scale parameter)

O Ri

— -
T, +L%.

1
Ol = §/dpD STr

//
Regulator:
« determines the modes present on scale k&
physics is regulator independent
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Interacting Fermi-gas model

Ansatz for the effective action:

Fermions : m=0, Yukawa-coupling generates mass

———————— ]

Bosons: the contains self interaction terms

We study the scale dependence of the potential only!!
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Local Potential Approximation (LPA)

What does the ansatz exactly mean ?

LPA is based on the assumption that the contribution of these
two diagrams are close.

(momentum dependence of the vertices is suppressed)

17"' Xflé 1:/'- yZ:’E Y n @

This implies the following ansatz for the effective action:

Iy [v] = /d4513 B%Kk,z‘j%’ + Uk (¥)
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Interacting Fermi-gas at finite temperature

Ansatz for the effective action:

—1+np(wr —pn) +np(wr + @)

) k* [1+2np(wp
Uy = —— V) 4
127 WB -
Bosonic part Fermionic part
Urp) =30 +500"  wp =R+  WE=k+RU  nppw) = F e—Pw
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Interacting Fermi-gas at zero temperature

T=0, u=0 q nF(w) % @(_w) We have two equations

for the two values of the
k step function each valid
A on different domain

A 4 ¥
R
v D P

ki = \/,LLQ = 92992: Fermi-surface

Fermionic vacuum fluctuations and
thermodynamic fluctuations cancel
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Integration of the Wetterich-equaiton

k 1.) Fix the high scale couplings in

A / the theory

AL _ .

2.) Integrate the
equation which is
valid outside of the
L ==1 Dr ) fermi surface

3.) Calculate the initial
Lol A conditions for the

D \i other equation inside
\ the fermi surface
/ \
4.) Integrate the equation =
which is valid below the Fermi- u gq)

urface
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BUT...

AL - .

To use the orginal

I method we need an
9 o LY: initial condition
/ SN which do not have
The boundary | this mixing

condition mix k

and g i

—
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Transform the variables

k
A

A

We can transform the
variables to make the
st

Q) quarter cirle into a
rectangle.

BUT now we have a well
2 defined boundary condition
tool!
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v

The transformed equation

Circle-rectangle transformation: (k,p) — (z,y)

86

r=vppk), y=

Transformation of the potential: U(xz.,y) = Vi(z) + u(z, y)

The transformed Wetterich-equation:

g*(kx)® 1

Boundary condition
at Fermi-surface

r0,u = —zVy 4+ yo,u —

And the new boundary conditions:

i(xr=0,y) =u(x,y==1) =0,
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Solution by orthogonal system

» Solution is expanded in an orthogonal basis to accomodate
the strict boundary conditoin in the trasformed area

[

a(z,y) =) en()haly) hn(1) =0 [d-y h (Y) P (Y) = O

1i=>0

» The square root in the Wetterich-equation is also expanded:

2/7...43 ©C 2~  ar2\p
b oa - g (kx) —1/2\ (O;u — M=)
_:{:LG -+ -y@yﬂ - 1272 ZD ( P w2+l

1

xe, (z) = / dy hn(y
0
2

Where: .

= (kx)* + M? \ Y }
Expanded square root

We use harmonic base

haly) = V2 cos Gnl, gn = (2n + 1)%
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Results-I

Fermi-surface in

Potential in one-loop the field variable
approximation K
U JN
20:— _ & / n S D,
.57 / D,

g0
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02 04 06 0810 120
Higher orders of the tayldr—
expansion for the square root

converge  fast where the
otential is convex

|
S
N

The solution changes only
under the fermi-surface,
because here we switch to
the other equation

Péter Posfay , ELTE, Wigner RCP



Results-I

Fermi-surface in

Potential in one-loop the field variable

approximation

: 2
N s

n 1 Zar B T N M R R R S T (b/f;r
~0.2 /0.4 0.6 0.8 l O
Where the potential is concave the solution slowly converges to a

straight line, because the free energy (effective potential) must be
convex from thermodynamics reasons.

This is the Maxwell construction.
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Results-I

U The convergence for the concave regions is slow and not point

2. (¢ like, because we approximate a line with harmonic functions.

1.5} Convergence -is very good for convex parts

1.0 Use the so_I,_u’fi_qn---W'hi'c_h 'is--cc;'n__verged weI_Ir for convex

0 _parts as a COARSE GRAINED ACTION
Fr T '- T N B — N (b/}(}r
0.2 0.4 0.6 0.8 [.0 1.2
—-0.5¢
i This action is good for calculating thermodynamics,

—1.0*" but one has to be careful with the surface tension
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Results-II

Phase structure of the interacting Fermi-gas model

12i T T A O T T T e T
. First Order | *FRG
10 *One loop
8 Mean field
Yukawa ~ [
coupling :’2 Of
4k
2
0
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A

Scalar self interaction
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Application for compact stars

The Fermi-gas is not a realistic model of a neutron star, this is

just demonstrates that a very small change in the EoS, means a
noticeable chanae in the solution of the TOV eauations.

Mass, M [Msq]

2.5

~=
Wy

I I I I I I
MF +
1-loop. =
Bact FRGLPA %
Gr\I-B |
WFHF1

11
Radius, R [km]
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Conclusions

» New method to calculate the running of the
coupling constants

- at zero temperature and finite chemical potential

- Using Harmonic expansion to satisfy the boundary
conditions

> This is a general result: it can have other applications for
Fermi fluids; for example in Condensed matter physics

» We demonstrated that

- quantum fluctuations can have important role in effective
models

- They can have an effect on the properties of compact stars
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